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* Abstract

The robustness of validity of four methods for setting confidence

intervals for a location parameter when the scale is unknown are

investigated. Three methods involve estimating the variance of an M-

estimate of location while the fourth is a procedure suggested by Mlaritz,

based on a permutation argument. The first three methods use either

a finite sample approximation to the asymptotic variance (a well-

known standard) or make inferences on the basis of the shape of the

putative likelihood function. The latter approach is related to the work

4 of Sprott, as well as that of Efron and Hinkley on conditional inference.

Overall, the Maritz procedure performs best though the standard does

surprisingly well.-

Key words: Robustness of Validity, Permutation Test, Conditional
Inference, Likelihood Function



1. Introduction

Most of the research in the area of robustness has focused on the

problem of point estimation and comparatively little attention has been

paid to the companion problems of interval estimation and testing. The

present work has been directed at one of the simplest realistic testing

problems: The construction of confidence intervals for a location

parameter when samples of independent observations are drawn from a

symmetric parent distribution of unknown location and scale. The goal is

to achieve validity robustness in small samples. That is, we seek

procedures for which the empirical coverage probabilities agree with the

nominal values over a range of sampling distributions.

Our particular interest has centered on adapting some ideas of

Sprott and his workers on "small-sample asymptotics** in the classical

parametric setting (Sprott and Kalbfleisch (1969), Sprott (1973), Sprott

(1980)) to the robustness problem. The essential idea is to use

the shape of the likelihood function as an indication of the distribution

of the maximum likelihood estimate. However, in practical robustness

problems, the true form of the likelihood function is unknown and our

investigation was prompted by a desire to see whether the putative

likelihood function (implicit in the choice of the estimation technique)

contained useful information as well.

Our numerical results suggest that while Sprott's original idea

carries over quite well to the robustness setting, his particular
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implementation does not, and other methods are required. One such method

is developed and its performance compared both with that of a standard

procedure (see Gross, 1976) and a novel permutation approach of Maritz

(1979). Moreover, some connections with the work of Efron and Hinkley

on conditional inference are explored (Efron and Hinkley (1978),

Hinkley (1978)).

2. Review of the Literature

There are a number of different strands that can be identified in

the fabric of research in this area. One of the oldest begins with

Gayen (1949) who investigated the distribution of Student's t-statistic

when the data are not normally distributed. His corrections are

functions of the skewness and kurtosis of the parent. In practice, these

moments must be estimated from the data and for small samples this is

quite impractical. More recently, Yuen and Murthy (1974) have studied

the special case of sampling from a member of the t-family and have

derived empirically compact approximations to the distribution of the..

°S usual t-statistic. The usefulness of this work has been diminished by

the advances made by Hampel and his coworkers (Hampel (1973), Field

and Hampel (1982)) in the area of "small-sample asymptotics."

Another approach has been based on Huber's M-estimator. The notion

is to obtain a robust estimate of location and a corresponding estimate

of its variability from which a t-like statistic may be constructed.

Intuitively, the notion is that such a statistic should display

'I .', '.- ' ," -' ' ' ,. ';-.. . - -, . . 'Z...,; ''.,. .. " """ ,.,%,,"-" ," . . . .. . -
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reasonable robustness of validity. For example, Gross (1976) carried

out extensive empirical investigations of the behavior of some 25

r . different statistics under four different sampling distributions. The

most successful ones employed either the jackknife or a finite-sample

version of the asymptotic standard deviation of the estimator to obtain a

denominator for the test statistic. Those statistics based on location

estimates derived from Hampel's redescending influence function or

v Tukey's bisquare performed quite well, both in terms of robustness of

". validity and robustness of efficiency.

An interesting proposal was put forward by Maritz (1979). He

pointed out that classical permutation arguments could be used in

obtaining confidence intervals for M-estimates of location. A difficulty

arises when the scale parameter is unknown because some estimates of

scale destroy the vaidity of the permutation argument. However other

common robust scale estimates such as the median absolute deviation are

permissible. Because Maritz's procedure conditions on the absolute

deviations of the observations from the center of the distribution, the

resulting confidence limits should be both conditionally as well as

unconditionally exact. The question of conditional confidence levels

arises in the work of Efron and Hinkley (1978) and Hinkley (1978) and

will be treated in Section 3 below. Unfortunately, Maritz did not carry

out any empirical studies.

Boos (1980) has proposed a procedure, motivated by a solution to

the problem of quantile estimation, which may be thought of as a simple

approximation to the more complex Maritz procedure. It seems also to

A
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be related to a suggestion made by Bickel (1976) on carrying out robust

analyses by applying classical methods to appropriately transformed data.

The Boos and Maritz procedures are fairly demanding computationally

and the former suffers from the additional constraint that only non-

decreasing *-functions, can be employed, thus ruling out Hampel's

redescending *-functions. Boos carried out a small empirical study and

concluded that his procedure held a small advantage in robustness of

validity and efficiency over the usual studentization method.

The above review has centered on methods involving the construction

• .. of a test statistic from a particular estimator. A more ambitious plan

is to formulate an optimality criterion for testing in the robustness

framework and to develop test statistics meeting this criterion. The

censored likelihood ratio test of Huber (1965) is an early example of

4. a test of two simple hypotheses with specific robustness properties.

Ylvisaker (1977) and later Lambert (1981) proposed different approaches.

In particular, Lambert defined an influence function for a test in terms

of the behavior of its P-values when the data are sampled from a model

distribution modified by point contamination. Lambert examines the

influence functions of a number of common test procedures.

Schrader and Hettmansperger (1980) introduced likelihood ratio-type

tests, based on robust loss functions, for the general linear model.

As is customary in the robustness literature, these authors advocate

joint estimation of location and scale parameters but fix the latter

at its estimated value for hypothesis testing for the former.

Specifically, following work of Huber (1967), they show that the

%.

4.4_
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asymptotic distribution of the difference in maximized robust loss

functions from a full model to a reduced model is proportional to X-(m),

where m is the corresponding reduction in dimensionality. The only

effect of mismatching the robust loss functions to the distribution of

the data is in the constant of proportionality. Although these authors

did not explicitly demonstrate how their proposal could be used for

interval estimation as well as hypothesis testing, the extension is

immediate.

Once an influence function has been defined, considerations similar

to those proposed by Hampel (1974) in the estimation case can be brought

to bear in the construction of new test statistics. A direct extension

of Hampel's influence function to the testing arena can be found in

Ronchetti (1979) and Rousseeuw and Ronchetti (1981). Ronchetti (1982)

discusses the connection between this influence function and others that

have been proposed and suggests that an appropriate optimality criterion

for a test of a simple null hypothesis is to maximize the asymptotic

power (within a given class of tests, appropriately standardized) subject

to a fixed bound on the influence function at the null hypothesis.

Ronchetti (1982) also discusses other notions such as the change-of-

variance function, which is germane to estimation and a change-of-power

function which is germane to testing. Optimal test statistics are

derived, though their small sample properites are not investigated.

Interestingly, Rieder (1978) and Millar (1983) both propose a simple

test statistic similar to that of Boos and prove certain asymptotic

sptimality properties.
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3. Procedures to Be Studied

4 Our work on deriving confidence intervals for robust estimates of

location stems originally from some ideas proposed by Sprott and

.0 Kalbfleisch (1965, 1969), reviewed in Sprott (1973, 1975) and extended

in Sprott (1980).

Sprott and Kalbfleisch considered the usual application of maximum

likelihood theory in the construction of confidence intervals in a

classical parameteric setting. Suppose n independent observations are

taken from a distribution F in the family {F indexed by a parameter
8

6. Under regularity conditions, the MLE of 0, 8, is asymptotically

normally distributed; i.e.,

V (8 - 0) + N(0,I (0)) (3.1)

where 1(0) is the Fisher information. In practice, confidence statements

for 0 based on 0 are made on the basis of (3.1). However, when n is

small, the asymptotic theory may not apply and the actual coverage

probability may differ considerably from the nominal level. Following

Fisher (1922), Sprott and Kalbfleisch suggest that the shape of the

likelihood function for 0 may give some indication of the applicability of

the asymptotics. In particular, if the observed likelihood differs greatly

from the normal likelihood implied by (3.1) (e.g., by being highly

asymmetric) then the appropriateness of the usual interval is doubtful.

I R -V W N
is, -
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'. To be considered as a meaningful statement in a fr. ,,,entist sense,

the last sentence must be recast as follows: Suppose we identify an

" infinite set of samples generating likelihoods {L(6)} under the model

F 6 which differ trivially from each other but all very different from the

corresponding functions of 6: [21I-l M -l / exp{- 1 [(6 - e )l(e)]

=LN(O ) .  (The quantity On changes with each sample). Then the claim is

that the proportion of the resulting intervals that cover the true value

of 6 will differ from the nominal level; i.e., the conditional level of

the procedure will be incorrect.

They illustrate this principle with an example based on sampling

from the exponential distribution with density 6 - exp(-t/8). The

likelihood function for 6 in small samples tends to be asymmetric and the

inferences based on the asymptotics are misleading. A solution is

proposed, however.

Working for convenience in terms of the relative likelihood

function R(6) - L(e)/L(;), they suggest finding a reparameterization of

8 for which the relative likelihood function is more nearly normal. The

usual asymptotic theory should be applied on the transformed scale and

the resulting confidence interval then transformed back to the original

6 scale. In the exponential case, for example, the transformation

-1/

X - / works well. The relative likelihood R(X) - L(X)/L(X)

tend to be quite normal looking (very little asymmetry) and the actual

confidence level matches the nominal level. Thus the relevance of the

usual asymptotics seem not to be a function of the sample size per se

the astsentncemustbe ecas asfollws: Suppse e idntiy a

iniiestofsmlsgneaiglklhod"L,}une h oe
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but rather of the shape of the (relative) likelihood functions

generated.

Sprott (1973) expands on this approach by carrying out a formal

Taylor series expansion of log R(e) about 8:

1 - I 3
log R(6 - ( - 0) 1() + 1 (6 - 0 - log R(0) +

ae (3.2)

The first term on the RHS of (3.2) corresponds to the relative likelihood

implicit in (3.1), which we denote by RN(O). If the second term on the

RHS of (3.2) is generally nonneglibible then the use of RN(e) alone as a

basis for inference is suspect. On the other hand, if a transformation

A - A(6) can be found for which the second term is generally very small,

or, ideally, identically zero, then the use of the asymptotics is better

justified.

Rewriting (3.2) we have

^" 21 - 1 - 3 -1 a3
log R(O)=-f (0 -e) 1 - - (e -0) 'e e-- log R(6)} +

If attention is confined to the region 10 -8e < k/l'/(e), then it

seems sensible to define a measure of deviation from normality by

F3 (6) I- (0) - log R(6) (3.3)

ae
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Under the transformation X = X(8), Sprott showed that

d82

If X can be found to make F3 ( ) zero or more nearly so than F3(6),

then the normal approximation should work better on the A-scale.

Sprott also employs some results of Welch and Peers (1963) to

explicate the connection between normal relative likelihoods and the

approximate normality of the maximum likelihood estimate. Briefly,

standard asymptotics implies that

v(e) - (e - e) 1T/2(0)

is approximately distributed as a standard normal deviate. Welch and

Peers showed that

1 2.z(e,e) - v(e) + T (v (0) + 2) F3(e) + h(6,e)

where h is complicated function of 8 and 0, is more nearly a standard

normal. Sprott argues that any transformation A -(6) that reduces

JF3  will make the resulting v(A) more nearly a linear function of

Z(A,A) and hence, improve the accuracy of the normal approximation to the

distribution of v(A)= (A - A)1I/ 2 (A).

Sprott (1980) extends these ideas to the case when nuisance

parameters are present. Let X - (XiX 2 ,....Xn) be a random sample of
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n independent observations from a distribution F in the family {Fg},

indexed by a vector parameter8 - (6 ... k)., The density of F is

denoted by f. The problem is to estimate 81 in the presence of the

nuisance parameters 82,..., 8k . The relative maximum likelihood function

of 8 is defined to be
A!

RM(81;X) - f(X;_*)/f(X;_)

where f(X;e) - II f(x ,8) (the likelihood of the data as a function of

i

8), - - MLE of 8 and 0* - (8i,8 '''8') is the restricted MLE of 8 for a

given value of 61. In the following, notational dependence on X will

be suppressed.

Let L - log f(X;t) and define

a2 LIa3L
"- 2L I  a3L i

I - ( o) - e 4L

One approach to inference about 81 is to focus on the so-called pivotal

quantity

U (e ) = ( 6 M I e l)[ ( 0)]- 1/2

It can be shown that

...- ,.
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a 2 log

so that the Taylor expansion of log RM( 1 ) about ;l yields

3 1log (6l) 1 2 u2O)l-l-ae) lo (1 1

ael

2 4 log RM 11

- (61 ei) a )I ()12 +

(3.5)

~ 2()
The quality of the quadratic approximation -u u to log (6 )

• i, depends on the magnitude of the nonconstant terms in the curly brackets

on the RHS of (3.5) If we set 0 - t 3(1 1())1/ in order to

confine attention to a plausible range of values for 0 and substitute

into (3.5), we obtain

log Noe )  -T' 12(el){ ± F ) - (3/4) F4(e ) + ... }

where

a 3 log RM(Ol) 11 3/2

UN".

-. . - .. * * ~ * *'- ~ P( .4 4. ". . -

* ,"...,*.. ".'%, ' .** * ; .r -- . '.5 5?* * -Q * < .?. .
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a4 log RM(el) 11 2
F4(e) = [ (6)]

ae1

As in the single parameter problem, if a transformation X = X() can

be found to reduce F3 (and F4 as well), the resulting relative maximum

likelihood function will tend to be more normal in repeated samples and

the normal approximation to the distribution of the pivotal quantity u

more defensible.

In one of his examples, Sprott (1980) considers the case of sampling

from the t-family of location and scale distributions. Because of the

population symmetry, F3() tends to be quite small but F4(6) may not be

negligible unless the sample size is fairly large. To deal with this

problem, Sprott suggests a simple device. Instead of approximating

RM by a normal curve, a t-curve should be used to account for the fact

that in small samples F4 tends to be positive indicating less precision

in the data.4.
Now the value of F4 at the mode of the relative maximum likelihood

function of a t-distribution on M degrees of freedom is 6(M + 1)- . Thus

the approximating t-curve to log R is found by solving the equation

-1F4 (e) - 6(M + 1). Denote the solution by M - M(6). Following the

logic enunciated above, we would then suppose that u(8 1 ) is distributed

approximately as t. and set the appropriate confidence limits for e1 .
M
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Sprott's work is based on the conjecture that R,, contains useful

information about the behavior of u and he simply provides a convenient

way of extracting the information in RN by a simple approximation using

a tabled distribution. A computationally burdensome approach would

involve a more detailed look at RN along the lines suggested by Fraser

'-'a (1976).

Although the above discussion has been carried out in the classical

* * setting, it is perfectly feasible to apply in the robustness setting.

In the language of N-estimation, suppose we choose a p-function

- corresponding to a model distribution F. Data are obtained from an

unknown distribution, denoted G. A (pseudo) relative maximum likelihood

function is constructed based on the assumed model F and the observed

data f rom G. The shape of this function is approximated by an

-~ appropriate t-curve and the latter is used to set confidence limits for

the parameter of interest. For example, we may choose F to be the

location-scale family for t 2 which corresponds to choosing a reasonable

"a redescending *-function for estimation, while we may sample from a

member of the slash family (Rogers and Tukey, 1977). Empirical studies

must determine whether the pseudo-relative maximum likelihood function

does indeed carry useful information.

In some respects, Sprott's work is closely related to that of

Efron and Hinkley (1978) and Hinkley (1978) on conditional likelihood

inference. They argue that in general the observed information rather

than the expected information (Fisher information) is a better guide to

the variability of the maximum likelihood estimate, conditional on an

appropriate ancillary statistic. In the case of a single location

.9%
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parameter, Efron and Hinkley, building on Fisher's work (1934) on

likelihood inference, show that the conditional distribution, fe(61a),

of the MLE 6 of 6 given the ancillary statistic of order statistics

k spacings is proportional to the likelihood function of 6. Thus, a

normal shaped likelihood does indeed imply a conditional normal

distribution of 8. Moreover, the variance of this conditional normal

- ~. distribution is i (e), the reciprocal of the observed information.

Hinkley extends this result to the location-scale case. The joint

conditional distribution of the MLEs given the appropriate ancillary is

again proportional to the likelihood function. The conditional

distribution of the pivot (61 - 6)/02 is asymptotically normal with
112

mean 0 and variance i *In an example based on sampling from the

Cauchy distribution, Hinkley demonstrates the superiority of the

observed information to the usual Fisher information as a measure of the

variability of the pivot, though the final recommendation is to set

confidence limits through a direct approximation of the likelihood

function.

Thus Sprott, Efron and Hinkley all use the shape of the observed

likelihood function to provide some indication of the appropriate measure

of variability to be attached to a point estimate of location. They

focus on how-the shape of the likelihood function may invalidate the

application of the usual unconditional asymptot'ics. Efron and Hinkley

5 suggest conditioning as a remedy while Sprott argues that transformations

are a better way of dealing with the problem. However, when an

appropriate transformation cannot be found or applied, Sprott does

consider alternative ways of approximating the likelihood function.
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4. The Data

In the simulations conducted for this study, data from the t-family

and slash family were generated. Standard pseudo-random number

generators of uniform and unit normal deviates were employed. Denoting

1/v
them by u and n respectively let s = n/u / . Then s is said to follow

the slash distribution with v degrees of freedom provided n and u have

been generated independently. Variates from the t-family were generated

using the "ratio-of-uniforms" method described in Kinderman and Monahan

(1977).

5. The Simulation

The simulation study investigates the properties of four procedures:

(1) AST--A standard procedure based on the asymptotic studentization of

an M estimate; (2) Tt--the procedure proposed here based on an extension

of Sprott's work and employing a t-curve approximation to the observed

pseudo-likelihood based on matching fourth derivatives; (3) Tn--as (2)

above except that a normal approximation to the observed pseudo-

likelihood is used; (4) M--the Maritz procedure.

All four procedures generate confidence intervals based on the use

of the same *-function corresponding to the choice of model. The first

three require calculation of the appropriate (robust) estimates of

location and scale. The E-M algorithm (Dempster, Laird, and Rubin,

1977) was used. In order to implement Tt, all derivatives of the

logarithm of the pseudo-relative maximum likelihood function up to fourth
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order m st be computed in order that the quantity F4 (e) can be obtained

easily (see Sprott, 1980, p. 516-517). More detailed descriptions of the

procedures follow below.

(1) AST - A 100(1 - a) confidence interval is given byA

(1- t n-l(a/2)Sn /2, 1 + t n-1(a/2)Sn-

where

A, x 1i I x i -0 1

S - [(n - 1)- E 2(1 / /- E ^

i 82 i 02

and

t (a) - 100(1 - a) percent point of Student's-t on v

degrees of freedom.

Remark: An intuitive interpretation of AST is obtained by considering

the pivotal (O1 - e)/ (0) , where

v(e) - 2 ,, -e

2

When the putative likelihood function defined by * matches the underlying

distribution, this pivotal is approximately distributed as a standard

normal variate. When these functions do not match, v(0) misestimates the

variance of e and the pivotal must be rescaled for approximate standard

NO.!1
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normality to be obtained. The correction used in AST is given by

c,(_)= ,( i 1 / 2( .i -e )

W2 V 2

so that v(e)/c (x) is the appropriate variance estimate of 01 . This

interpretation will prove useful when we contrast the methods below.

(2) Tt -A 100(1 - a) confidence interval is given by

(0 -t(a/2)[i (0 )1 1/2, e ( 2

SA-1where M is the solution to F4(8) - 6(M + 1)

(3) Tn - A 100(1 - a) confidence interval is given by

(61 -z(a/2)[il(e)/cl , 1 + z(a/2)[i (-)/c]1)

where

z(a/2) = 100(1 -a) percent point of the standard normal

distribution.

c - c(x) - a moderating factor for the usual asymptotic variance

that depends on the data observed.

Remark: Both Tt and Tn stem from the notion that the usual conditional

asymptotic statement, namely that (6 1)/[i()1/2 is distributed as a

standard normal variate, is not valid in small samples. Tt uses instead

a t-approximation to the observed pseudo-likelihood while Tn adjusts the

A1 1/2
asymptotic variance [i (6)] , again by recourse to the observed pseudo-

likelihood. In other words, Tn behaves as if the likelihood is indeed

U '4

. ~ 4 ~ .~ - -~ - -. . - ~--'.-.'..
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normal but with a spread that may differ substantially from that

suggested by the asymptotics.

In this simulation we have used a fairly crude method to determine

the adjustment factor c(x). The relative maximum likelihood function

RM(.) is evaluated at three pairs of points symmetrically placed about

e. For k = 1,2 and 3, let

=~ ~ 1 1 R( I /2) 1_ k l( )/2

wk - I + k(i (6)) + RM(6 1  k(i (e )]

.1 1

Then set ck = -2k 2 log wk and c(x) -. Cc1 + c2 + c 3 ). Thus c(x)

represents a compromise among three estimates of the required scaling

factor, obtained by looking at different points on the shoulders of RM(-).

If RM  is exactly normal then c(x) - 1

(4) M - A 100( - a) confidence interval is given by (6L,eU)

where 6 L and e U are solutions to the equations

E sgn(x i -t)*(X i - tJ/s) (iz(a/2)[ E *2(ix ti/s)]1 /2

-i i

where s - med~jx i- t l "

Remark: The above prescription actually represents a convenient normal

approximation to the full permutation distribution derived by Maritz

(1979). He noted that the usual permutation argument applied to means or

II

,"'"-
"

-•"
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nonparameteric statistics like the Wilcoxon signed rank statistic could

could also be applied to M-estimates. If we define

M (xt) = E sgn(x i - t)4( xi - t i )

then the M-estimate of location for the data x is the solution of the

equation M (xt) = 0 . To obtain a 0 - 2r/2n) two-sided confidence

interval (tl,t2), the values t1 and t2 must be determined by finding the

rth smallest and the rth largest values of t solving the equations

Z sgn(xl - t)W(ix! - ti) = 0

where the summation is over i = 1,2,...,s and s = 1,2,...,n. That is

we consider all possible solutions to the basic equation when the data

are allowed to vary over all subsets of the original data. The desired

*th thvalues t1 and t2 are the r smallest and r largest of these solutions.

In practice this calculation is somewhat demanding so that a normal

approximation is recommended. Secondly, an estimate of scale is often

needed and one that is a function of the absolute deviations Ix, - ti,

1x2 - t,..,Ix - ti may be employed without disturbing the permutation

argument.

Remark: Boos' (1980) procedure is essentially equivalent to Maritz's

except that s is replaced by some fixed estimate of scale (not depending

on t) and a t distribution on (n - 1) degrees of freedom, rather than the

normal distribution, is employed as the reference.

.
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6. Results

The results of the major simulations are presented in Table 1.

While Tt performs adequately when the data are generated from the

t-family, it breaks down quite badly when slash-family data are used. On

the other hand, Tn performs quite well throughout though it is somewhat

inferior to AST for slash data (but superior to AST for t2 data).

The Maritz procedure performs about as well overall as AST and somewhat

better in fact for t2 data.

Insert Table I about here

It seems clear that the device of approximating RM by a t-curve

based on matching fourth derivatives at the mode is too sensitive to the

shape of the underlying parent distribution. Figure 1 displays a typical

RM and its approximations by t-curves and a normal curve. The t-curve

approximation is quite poor while the normal curve one is excellent.

Similar experiments were run for samples of size 10 and 40 but as the

comparisons are qualitively the same as for size 20, they are not

presented here.

Insert Figure 1 about here

The conditional coverage probabilities of the procedures are also

of some interest, especially in light of the Efron-Hinkley proposals.

Table 2 presents results for four combinations of data and model which

which are illustrative of the results obtained for the full set of
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of combinations depicted in Table 1. For each combination, the coverage

probabilities for the three procedures are based on the same set of 1000

The cut points are provided. There is an obvious pattern of increasing

coverage probability with increasing i (0. Of course, ideally there

should be no trend with i (6) Particularly in the case of the Tn

procedure, it appears as if the low observed values of i (e) are "too"

low while high ones are "too" high.

Employing jackknifed values of i in the construction of Tn

confidence intervals immediately suggests itself as a possible remedy.

-~ However a small experiment based on jackknifing log i 11 and then trans-

forming back did not give promising results. While the Maritz procedure

performs better than the others as one would expect from its theoretical

properties, its conditional coverage probabilities do follow the same

trend as those of the others.

Insert Table 2 about here

Recall now that Hinkley (1978) found that i 1 (0) seriously under-

* estimates the variance of 81when sampling from the Cauchy distribution

(n - 20). Our findings support this. In Table 3, we display the median

values of c(M) for each combination of model and data, each again based

on a run of 1000 samples. The quantities in parentheses are the ratios

* of the interquartile range to the median for each batch of 1000 values of

* c(L). That c(S) does not vary much across samples within a given



S.z

-22-

sampling situation explains why it does not also vary across the sampling

situations investigated here. In any case, the values of c(x) are

substantially less than unity indicating that the use of i (0) alone

would produce intervals much too liberal.

Insert Table 3 about here

7. Concluding Remarks

Our results agree with those of Sprott in the sense that the applicability

of asymptotic normality depends most on the shape of the observed likeli-

'. ~hood function than on sample size. Our results generalize his since our

experiements demonstrate that pseudo-likelihoods, corresponding to robust

M-estimates, also share this property.

Specifically, our results indicate that the small sample distribution

of the pivotal

1 -e 1  (7.1)

/'T (e)

is approximately normal with mean zero, but with nonunit variance. Thus,

% '. the observed information is not a good variance estimate for 1 in small

samples with unknown scale. This holds true whether or not the estimating

function matches the distribution of the data.

.LX'
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The observed (pseudo-) likelihood function can be used to rescale

the pivotal to obtain an honest small sample variance estimate. We chose

to do this directly by approximating the rescaling factor by comparing the

observed relative maximized likelihood function to a family of normal

,.-'...

.~.:'.likelihoods. This proved quite successful albeit somewhat ad hoc.

Alternative direct approximation methods might prove slightly better.

I We have not been successful in determining an algebraic expression

for the rescaling factor to be applied to the pivotal (7.1). Sprott's

-.-.

suggestion of matching the 4th derivative of an approximating t-family did

not perform well. Our current conjecture is that the correct variance

estimate of 0 1 when 62is unknown, is the observed value of

)1(6-), (0)I11 where A(B) - Zs (0 and '0' is the

contribution to the score vector (location and scale) of the i th

observation. This follows directly from Huber's (1967) general results

concerning the asymptotic distribution of robust M-estimates. Our

conjecture is that this expression is valid both conditionally and

unconditionally, and that it should be used routinely to set confidence

intervals for location parameters, even in situations where the estimator

matches the distribution of the data! This variance estimate tends to

correct for both small sample sizes and the mismatch of estimating

function and data distribution.

Our research has identified soe open problems in the areas of

%I

conditional inference and robust testing. We were aware of possible

observation This follows. diecl fro .ub's (1967). geneal rsult
co Sr.gteaypotcdsrbto froutMetmts u

conjctue istha ths exresion s vlidbothconitioallzan
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connections among these areas prior to our research reported here, and we

-. are more strongly convinced that the results of Hinkley (1978) can be

extended to situations where the putative likelihood function does not

match the distribution of the data. Theoretical results along these

lines would be very useful in practice since they not only provide

computationally cheap alternatives to the Maritz procedure, but are easily

extended to the general linear model.

A question mark also remains as to why the AST method performs so

well. In particular, why joint estimation of location and scale

C parameters, followed by testing methods assuming known scale (fixed at

its estimated value) provides such good coverage probabilities. We argue

that this is a general phenomenon not well understood in the statistical

community. In particular, in certain applications of Bayesian methods,

fixing nuisance parameters at their estimated values rather than providing

priors for them often yield extremely accurate inferences. Clearly much

needs to be done to understand the mechanism behind these empirical

findings.
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Table 1

Coverage Probabilities for 80 and 95 Percent Nominal Confidence Intervals

n - 20

Data Model AST T T M AST T T Mt n t n

t2 t2 .87 .81 .82 .82 .98 .96 .96 .96

t5  .84 .84 .81 .77 .97 .97 .96 .95

t .78 .82 .84 .80 .95 .97 .96 .95

t5  t2  .81 .77 .79 .84 .95 .93 .94 .96

t5  .82 .80 .79 .80 .95 .94 .94 .95

t 79 .79 .80 .78 .95 .95 .93 .94

20 t2  .80 .77 .78 .84 .96 .93 .94 .97

t5  .81 .80 .79 .80 .95 .95 .95 .96

t10 .80 .79 .78 .78 .95 .94 .94 .95

82  t2  .82 .63 .75 .79 .96 .83 .92 .95

t5  .83 .76 .82 .81 .96 .92 .95 .95

t 0 80 .78 .81 .78 .95 .94 .95 .94

5  t2  .76 .59 .71 .78 .92 .78 .89 .95

t5  .80 .71 .78 .81 .95 .90 .93 .95

t10 80 .74 .79 .78 .95 .92 .94 .94

8s10 t 2  .75 .57 .71 .78 .93 .79 .89 .95

t 5  .79 .70 .77 .80 .94 .89 .93 .94

t 10 *.79 .74 .79 .78 .95 .92 .93 .94

Note: Results for AST and Tt based on the same 5000 samples;

results for the T and M based on the same 1000 samples.

J np * . . ... .... ......... '-... ,V -
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Table 2

Conditional 95 Percent Coverage Probabilities

Cut
values

of

Data Model il () AST T M il(1 )

t 2  t2  L .96 .93 .94
.041

M .99 .96 .96
.059

H .99 .98 .98

t t L .92 .92 .92
2 10 .09

M .96 .96 .95
.14

H .97 .99 .97

s2 t L .95 .85 .91 .059

M .98 .95 .98
.087

H .98 .95 .97

s2 t 1 0  L .92 .91 .92 .15

M .96 .97 .95
.18

.96 .98 .96
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Table 3

Medial Values of Pivotal Rescaling Factor, c-(x)

n -20

t 2 ' 5 t10 s2 s5 S 10

t .5 .5 .53.55 .53 .52
2 (.09) (.08) (.08) (.095) (.095) (.09)

t .71 .70 .69 .71 .69 .69
5 (.04) (.025) (.02) (.04) (.02) (.02)

ti .79 .78 .78 .78 .78 .78
10 (.02) (.006) (.004) (.01) (.005) (.004)

n -10

t 2  .54 .52 .51 .53 .51 .51

(.11) (.10) (.09) (.13) (.10) (.10)

t5 .66 .66 .65 .66 .66 .65

(.035) (.02) (.02) (.04) (.02) (.02)

t 0 .73 .73 .73 .73 .73 .73

(.004) (.001) (.0017) (.003) (.002) (.0017)

k 

-
*~

mpI
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